

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Course	ECE 58400 – Linear Control Systems			
Type of Course	Core course for the EE option of the MSE program			
Catalog Description	Linear spaces and linear operators, mathematical representations of linear systems, canonical forms, state space description, controllability, observability, realization, canonical decomposition, stability, introduction to Lyapunov methods, eigenstructure assignment, partial and full order observers, disturbance decoupling.			
Credits	3			
Contact Hours	3			
Prerequisite Courses	ECE/ME 33300 or graduate standing			
Corequisite Courses	None			
Prerequisites by Topics	Exposure to linear algebra and matrices. The student is expected to have seen the following topics: matrices and vectors, (introductory) linear algebra; differential equations, Laplace transform, transfer functions. Exposure to topics such as control systems, circuits, signals and systems, or dynamics is not required, but can increase student's appreciation.			
Textbook	Linear System Theory & Design, by Chi-Tsong Chen, Oxford Press, 3 rd Ed., 1999.			
Course Objectives	Introduction to applied linear algebra and linear dynamical systems with applications to circuits, signal processing, communications, and control systems. Stability, controllability, and observability. Realizability and minimal realization theory. State feedback and state estimators. Pole placement and model matching.			

Course Outcomes

Students who successfully complete this course will have demonstrated an understanding of:

- a. State space representation of linear time-invariant systems
- b. Solution using the state space data
- c. Similarity transformation and Jordan form
- d. Stability analysis using the Lyapunov function
- e. Controllability and observability
- f. State feedback design
- g. State estimator design
- h. Pole placement design and model matching.

	Program Student Learning outcome						
Course Outcome	1	2	3	4	5	6	7
а	х						
b	х						
С	х						
d	х						
е	х						
f		х					
g		х					
h		х					
Assessment Level*	Н	Н					

Mapping between course outcomes to program student learning outcomes

* H: Outcome assessed with high degree; M: Outcome assessed with medium degree; L: Outcome assessed with low degree

Lecture Topics

- 1. Linear algebra with applications
- 2. Mathematical descriptions of systems
- 3. Response of linear systems
- 4. Stability
- 5. Controllability, observability, and canonical forms
- 6. Realization theory and algorithms
- 7. State feedback
- 8. State observation
- 9. Pole placement and model matching

Computer Usage	High
----------------	------

Laboratory	Experience	None
------------	------------	------

Design Experience High

Coordinator TBD

Date 10/01/2018

Changes made

- 1. Textbook
- 2. Course outcomes
- 3. Table added
- 4. Lecture topics
- 5. Lecture topics
- 6. Date

Old Course Outcomes

- a. Understand the internal and external system descriptions.(a, e)
- b. Understand the stability, controllability, observability, and realizations concepts with an emphasis on fundamental results. (a, e)
- c. Understand the control systems design methods: state-feedback, state-estimation, and eigenstrcture assignment.
 (a, e)