

DEPARTMENT OF ELECTRICAL AND **COMPUTER ENGINEERING**

Course ECE 30100 - Signals and Systems

Type of Course Required for the EE and CmpE programs

Classification, analysis and design of systems in both the time- and **Catalog Description**

> frequency-domains. Continuous-time linear systems: Fourier Series, Fourier Transform, bilateral Laplace Transform. Discrete-time linear systems: difference equations, Discrete-Time Fourier Transform, bilateral z-Transform. Sampling, quantization, and discrete-time processing of continuous-time signals. Discrete-time nonlinear systems: median-type filters, threshold decomposition. System design examples such as the compact disc player and AM radio.

Credits 3

Contact Hours 3

Prerequisite Courses ECE 20200

Corequisite Courses None

An understanding of basic concepts of linear circuits as examples of **Prerequisites by Topics**

> linear systems; an understanding of the application of unilateral Laplace transforms to circuit problems; a familiarity with the solution of linear constant coefficient differential equations; a familiarity with

complex numbers and calculus, including power series.

Textbook Linear Systems & Signals, by B. P. Lathi and Roger Green, The Oxford

Series in Electrical & Computer Engineering, 3rd Ed., 2017

Course Objectives Give junior students in electrical engineering an introduction to the

analysis of both continuous and discrete time signals and systems.

Course Outcomes Students who successfully complete this course will have

demonstrated:

1. An ability to classify signals and systems (1).

2. An ability to use convolution to determine the time-domain

response of continuous-time systems (1).

- 3. An ability to represent continuous-time signals by their Fourier series (1).
- 4. An ability to analyze continuous-time signals and systems by Fourier Transform (1).
- 5. An ability to analyze continuous-time systems by Laplace transform (1).
- 6. An ability to understand sampling and quantization (1).
- 7. An ability to use convolution to determine the time-domain response of discrete-time systems (1).
- 8. An ability to represent discrete-time signals by their discrete-time Fourier series (1).
- 9. An ability to analyze discrete-time signals by discrete-time Fourier Transform (1).
- 10. An ability to analyze discrete-time systems by z-transform (1).

Lecture Topics

- 1. Classification of signals and systems
- 2. Signal operations—time shifting, scaling, inversion
- 3. Continuous-time impulse response and convolution
- 4. Laplace transform and its applications, transfer functions
- 5. Orthogonal representation of signals and Fourier Series
- 6. Fourier transform and its applications
- 7. Time-domain solution of difference equations
- 8. Discrete-time impulse response and convolution
- 9. Discrete-time Fourier series
- 10. Discrete-time Fourier transform and its properties
- 11. Sampling and quantization
- 12. Discrete Fourier transform
- 13. z-Transform and its applications
- 14. System design examples

Computer Usage Medium

Laboratory Experience None

Design Experience None

Coordinator Elizabeth Thompson, Ph.D.

Date 8/20/2024