ANOVA : Analysis of variance

Parametric test: requires nominal (groups) independent variables and ratio or interval dependent variables.

- 1. Find \overline{X} , s², n for each group
- 2. Compute the grand mean: $\overline{\overline{X}}$

$$\overline{X} = (\underbrace{n_1 * \overline{X}_1}_{n_1 + n_2 + n_3} + (\underbrace{n_2 * \overline{X}_2}_{n_1 + n_2 + n_3})$$

- 3. Compute the between groups variance:
 - a. subtract the grand mean from each group mean
 - b. square the difference
 - c. multiply by n for that mean
 - d. sum the totals
 - e. divide by df (number of groups -1)

$$\frac{ni(\overline{X}_i - \overline{\overline{X}})^2}{df}$$

4. Compute within groups variance (s_p^2) :

a. Multiply the variance for each group by n-1 for that group b. Sum these totals and divide by df c. df = $(n_1 - 1) + (n_2 - 1) + (n_3 - 1)$

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2 + (n_3 - 1)s_3^2}{df}$$

5. Divide between groups variance by within groups variance

6. Compare to critical value in F table with between groups df (top of the chart) and within groups df (side of the chart)